Comparison Comparison PCA Train GMM Feature Reduction Classify GMM Threshold
نویسندگان
چکیده
A new approach to face verification from 3D data is presented. The method uses 3D registration techniques designed to work with resolution levels typical of the irregular point cloud representations provided by Structured Light scanning. Preprocessing using a-priori information of the human face and the Iterative Closest Point algorithm are employed to establish correspondence between test and target and to compensate for the non-rigid nature of the surfaces. Statistical modelling in the form of Gaussian Mixture Models is used to parameterise the distribution of errors in facial surfaces after registration and is employed to differentiate between intraand extra-personal comparison of range images. An Equal Error Rate of 2.67% was achieved on the 30 subject manual subset of the the 3d rma database.
منابع مشابه
Local fuzzy PCA based GMM with dimension reduction on speaker identification
To reduce the high dimensionality required for training of feature vectors in speaker identification, we propose an efficient GMM based on local PCA with fuzzy clustering. The proposed method firstly partitions the data space into several disjoint clusters by fuzzy clustering, and then performs PCA using the fuzzy covariance matrix on each cluster. Finally, the GMM for speaker is obtained from ...
متن کاملApplying the extended mass-constraint EM algorithm to image retrieval
We extend the mass-constraint data clustering and vector quantization algorithm to estimate Gaussian Mixture Models (GMMs) as image features applying to the image retrieval problems. The GMM feature is an alternative method to histograms to represent data density distributions. Histograms are well known for their advantages including rotation invariance, low calculation load, and so on. The GMM...
متن کاملGmm Based on Local Robust Pca for Speaker Identification
ABSTRACT: To solve the problems of outliers and high dimensionality of training feature vectors in speaker identification, in this paper, we propose an efficient GMM based on local robust PCA with VQ. The proposed method firstly partitions the data space into several disjoint regions by VQ, and then performs robust PCA using the iteratively reweighted covariance matrix in each region. Finally, ...
متن کاملInvestigations into tandem acoustic modeling for the Aurora task
In tandem acoustic modeling, signal features are first processed by a discriminantly-trained neural network, then the outputs of this network are treated as the feature inputs to a conventional distribution-modeling Gaussian-mixture model (GMM) speech recognizer. This arrangement achieves relative error rate reductions of 30% or more on the Aurora task, as well as supporting feature stream comb...
متن کاملComparison between Gmm-svm Sequence Kernel and Gmm: Application to Speech Emotion Recognition
Speech emotion recognition aims at automatically identifying the emotional or physical state of a human being from his or her voice. The emotional state is an important factor in human communication, because it provides feedback information in many applications. This paper makes a comparison of two standard methods used for speaker recognition and verification: Gaussian Mixture Models (GMM) and...
متن کامل